

Universität Stuttgart

UNISTUTT 19th of March 2021

NiFe discs test sample:

Sample layout:

NiFe discs (D=5 μm), periodicity of 10 μm on fused silica substrate

TT 1251

Surface coverage of NiFe: $\pi/16 \approx 20$ %

11.0

11.5

Magnetic field (T)

12.0

12.5

HFEPR measurements of NiFe disks

NiFe discs test sample:

Sample layout:

D1 = 9.96 um

WD: 8.99 mm

Det In-Be

SEM HV: 30.0 kV

NiFe discs (D=5 μm), periodicity of 10 μm on fused silica substrate

Results:

- 1) We have HFEPR signal at 0 T and g=2;
- 2) The signal comes from NiFe material;
- 3) The signal is independent from the disks shape

COMING SOON

Test of the new Heterodyne Source/Detector at HFEPR quasi-optic setup

- 1) Tests of the source & detector without a quasi-optic setup;
- 2) Tests using the HFEPR quasi-optic setup and Mn12 as standard.

Test of the new Heterodyne Source/Detector at HFEPR quasi-optic setup

Mn12ac

Previously measured at HFEPR setup

