
EPR permeability model
The time evolution of nuclear (electron) magnetization is phenomenologically described by the Bloch equations

dM

dt
= M× γB−R (M(t)−M0) ,

where γ is the gyromagnetic ratio, M denotes the magnetization vector, and B is the magnetic field. The
relaxation term R (M(t)−M0) ensures that after switching off the perturbing time-dependent field B1, the
magnetization tends to some equilibrium value M0 given by the static external magnetic field B0. For simplicity,
our static magnetic field is oriented along the z-axis, while the vector of perturbing field lies in the xy-plane,
i.e. the static and the perturbing field are perpendicular to each other. Moreover, we will assume that the
perturbing field oscillates with frequency ω and is circularly polarized with handedness determined by the sign
in the expression for By

B = B0 + B1(t) ,

Bx = B1 cosωt,

By = ±B1 sinωt,

Bz = B0.

With such definition of magnetic fields, the Bloch equations read

dMx

dt
= γ (MyBz −MzBy)− Mx

T2
,

dMy

dt
= γ (MzBx −MxBz)−

My

T2
,

dMz

dt
= γ (MxBy −MyBx)− Mz(t)−M0

T1
,

where we introduced two relaxation times T1 and T2, which reflects the fact that the transverse components of
the magnetization vector (with respect to the static field) usually relax to the equilibrium at a different rate.

In the stationary state, the longitudinal magnetization will be constant so that only the tranverse components
will vary with time

Mx = αx
1 cosωt+ αx

2 sinωt,

My = αy
1 cosωt+ αy

2 sinωt,

Mz = const.

where the coefficients αx,y
i are yet to be determined. After inserting all these expressions into Bloch equations,

capitalizing on the time invariance of Mz and comparing separately terms containing cosωt and sinωt, we
arrive at

dMz

dt
= 0 ⇒ αy

1 = ∓αx
2 , αy

2 = ±αx
1 ,
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±αx
1 = ±M0

γB1Ω±T
2
2

1 + Ω2
± + γ2B2

1T1T2
,

±αx
2 = ∓M0

γB1T2
1 + Ω2

± + γ2B2
1T1T2

,

±αy
1 = M0

γB1T2
1 + Ω2

± + γ2B2
1T1T2

,

±αx
2 = M0

γB1Ω±T
2
2

1 + Ω2
± + γ2B2

1T1T2
,

Mz = M0
1 + Ω2

±
1 + Ω2

± + γ2B2
1T1T2

,

Ω± = ω ± ω0 = ω ± γB0.

As we are looking for some complex anisotropic tensor
↔
ξ , which would allow us to link the magnetization and

the perturbing magnetic field by a simple linear constitutive relation M =
↔
ξB, it will be more convenient to

switch to complex notation and work with expressions that describe the system’s response to linearly polarized
perturbing fields instead of the circularly polarized ones. We shall start with a perturbing magnetic field

polarized along the x-axis. The corresponding components of the response tensor
↔
ξ can constructed from the

coefficients αx,y
i by taking their appropriate linear combination and then comparing the terms in front of cosωt

and sinωt.
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= x−polarized ⇒ B1 = B1Re
{
e−iωt

}
x̂,

Mx = Re
{
ξxxB1e

−iωt} = B1 (Re {ξxx} cosωt+ Im {ξxx} sinωt) ,

My = Re
{
ξxyB1e

−iωt} = B1 (Re {ξxy} cosωt+ Im {ξxy} sinωt) ,

Mx(y) =
+α

x(y)
1 + −α

x(y)
2

2
cosωt+

+α
x(y)
2 + −α

x(y)
2

2
sinωt,

⇓

ξxx =
M0γω0

ω2
0 − ω′2

, ξxy = −i
M0γω

′

ω2
0 − ω′2

, ω′ = ω +
i

T2
.

Please note that in the above expression, we have entirely omitted the term γ2B2
1T1T2, which is justifiable for

sufficiently low microwave source powers. In a similar manner, we obtain the expressions for the magnetic field
linearly polarized along the y-axis.
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= y−polarized ⇒ B1 = B1Re
{

ie−iωt
}
ŷ,

Mx = Re
{

iξyxB1e
−iωt} = B1 (−Im {ξyx} cosωt+ Re {ξxx} sinωt) ,

My = Re
{

iξyyB1e
−iωt} = B1 (−Im {ξyy} cosωt+ Re {ξxy} sinωt) ,
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Mx(y) =
+α

x(y)
1 − −αx(y)

2

2
cosωt−

+α
x(y)
2 + −α

x(y)
2

2
sinωt,

⇓

ξyx = i
M0γω

′

ω2
0 − ω′2

, ξyy =
M0γω0

ω2
0 − ω′2

, ω′ = ω +
i

T2
.

The complex tensor can be now written in the following compact form

↔
ξ =

M0γ

ω2
0 − ω′2

(
ω0 iω′

−iω′ ω0

)
.

Although the above expression already links the magnetization vector to the magnetic field, standard material

relations are defined for the auxiliary magnetic field H. The permeability tensor
↔
µ is related to

↔
ξ via the

following expressions

M =
↔
ξB =

↔
χH =

(↔
µ −

↔
I
)
H, B = µ0

↔
µH ⇒

↔
µ =

(
↔
I −µ0

↔
ξ

)−1
,

↔
µ =


1 +

κ (ω0 − κ)

(ω0 − κ)2 − ω′2
i

κω′

(ω0 − κ)2 − ω′2
0

−i
κω′

(ω0 − κ)2 − ω′2
1 +

κ (ω0 − κ)

(ω0 − κ)2 − ω′2
0

0 0 1

 .

where κ = M0γµ0. Importantly, the material properties in the direction of the static magnetic field are unaf-
fected by the electron transtitions.

Also note that when choose to follow the eiωt convention (used e.g. in Comsol), appropriate changes in signs
have to be made:
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= x−polarized ⇒ B1 = B1Re
{
eiωt
}
x̂,

Mx = Re
{
ξxxB1e

iωt
}

= B1 (Re {ξxx} cosωt− Im {ξxx} sinωt) ,

My = Re
{
ξxyB1e

iωt
}

= B1 (Re {ξxy} cosωt− Im {ξxy} sinωt) ,
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= y−polarized ⇒ B1 = B1Re
{
−ieiωt

}
ŷ,

Mx = Re
{
−iξyxB1e

iωt
}

= B1 (Im {ξyx} cosωt+ Re {ξxx} sinωt) ,

My = Re
{
−iξyyB1e

iωt
}

= B1 (Im {ξyy} cosωt+ Re {ξxy} sinωt) .

The complex permeability tensor now reads

↔
µ =


1 +

κ (ω0 − κ)

(ω0 − κ)2 − ω′2
−i

κω′

(ω0 − κ)2 − ω′2
0

i
κω′

(ω0 − κ)2 − ω′2
1 +

κ (ω0 − κ)

(ω0 − κ)2 − ω′2
0

0 0 1

 ,

where ω′ = ω − i

T2
.
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