HF-EPR EXPERIMENTAL RESULTS OF PLASMONIC ENHANCEMENT

Lorenzo Tesi (USTUTT) April 2020

Universität Stuttgart

Antenna design and THz transmission characterization

275 300 325 350 Frequency (GHz)

175 200 225 250

Far Field Simulation

-184L simulation

375

400

425

450

and Experiment

High Field Electron Paramagnetic Resonance Spectroscopy

Analysis of the HFEPR results

FFDMR Maps

Active Position

Non-active Position

FFDMR Maps

Active – Non active Position

Active – Non active Position

AFDMR Maps (Active position)

AFDMR Maps (Non-Active position)

Results from AFDMR Maps

Analysis of the HFEPR results

Sample: TEMPOL 5% dispersed in PMMA and spin coated on bare quartz (film thickness ca. 400nm)

Subtraction of the two set of measurements

FFDMR Maps

Bare Quartz sc5%_TEMPOL_PMMA int of Q276-Q186°

Conclusions and perspectives

- FFDMR Maps show a difference of behaviour when antennas are in active or non-active position, in particular an enhancement is observed in active-position at the expected frequency;
- AFDMR Maps show an enhancement with 180° periodicity, in agreement with antennas symmetries. A further 90° periodicity is evidenced an attributed to Fabry-Perot resonaces in quartz;
- FFDMR Maps of a sample without antennas show no enhancement;
- Perspectives: Self-Assembled Monolayer of radicals or magnetic molecules addressed directly on top of the antennas:

