Spectra of plasmonic antennas in VIS and MIR

Reflection: peak FTIR measurements - EBL antennas

EBL rod-like antennas increasing antenna length $\xrightarrow{\rightarrow}$ red shift of the resonance

Transmission: dip

arrays of nanodiscs

red shift of the resonance wavelength with increased radius observed in the trasmission spectra

Setup in EPR spectrometer

Polarization resolved measurements

detectors for co-polarized (bolometer) and cross-polarized

diabolo antennas: strong polarization dependence of response, not so pronounced cross-polarized component

Typical (best) raw spectra

co-polarized

cross-polarized

beating periods: 1.7 GHz (18 cm), 84 MHz (3.6 m)

Sample 27 designed resonance 350 Ghz bridge: $1 \times 2 \mu m$ array $1.3 \times 1.3 \text{ mm}$, step $2 \times \text{length}$

Typical (best) processed spectra

Sample 27: 350 GHz

Sample 25: 210 GHz

beating period (sample 25): ~5 GHz (6 cm)

Sample 27 designed resonance 350 Ghz bridge: $1 \times 2 \mu m$ array $1.3 \times 1.3 mm$, step $2 \times length$

optical microscopy – bridges are intact

Polarization-resolved spectra

co-polarized response

Increase the size

Linear part of the dispersion plasmon energy ~ 1/size

But: very little plasmonic character, mostly surface electromagnetic wave

It is not clear how efficient will be the EM wave focusing and enhancement

Simulations (MH) are promising

Simulated diabolo antenna

Experiments with tapered gold waveguide

Astley et al., Appl. Phys. Lett. (2009)