

Pulsed EPR: Instrumentation and Practice at High Magnet Fields

Alisa Leavesley

17.06.2019

What is electron paramagnetic resonance (EPR)?

What information does EPR provide?

 Identify presence, quantity, and type of paramagnetic species

Continuous Wave (CW)

• Inform on molecular structure, environment, and dynamics

Pulsed

Local spin environment and dynamics are determined by multi-spin interactions

Pulsed EPR: an outline of the talk

- Why use it?
- How do you get data? (Instrumentation)
- Examples of practical applications (Practice)

> More detailed information about spin interactions (e⁻ - e⁻ & e⁻ - n) and dynamics

6

Advantages of high field/frequency EPR

- Improve sensitivity & polarization
- Improve g-factor resolution

• Reduce zero-field splitting effects

Bagryanskaya, E.G. et al Phys. Chem. Chem. Phys. 2009, 11, 6700-6707.

Clarkson, R. B. et al Molec. Phys. 1998, 95, 1325-1332.

Instrumentation for pulsed high field EPR

UCSB 194 GHz home-built instrument overview

Features:

- Modified NMR magnet
- Cryogenic temperatures
- Quasi-optical design
- Broad-band solid-state µw source
- ➤ Versatile µw manipulation

9

Siaw, T.A., Leavesley, A., Lund, A., Kaminker, I., Han S. J. Magn. Reson. 2016, 264, 131-153. Leavesley, A., Kaminker, I., Han, S. eMagn. Reson. 2018, 7.

High frequency pulses: generation and requirements

Control of pulse length, amplitude, $v_{\mu w}$, and $\phi_{\mu w}$

Methods to cut pulses from cw sources

- Pin diode switches
- Mixers
- Arbitrary waveform generator (AWG)

C. Armstrong, "The Truth about Terahertz", IEEE Spectrum, August 2012

Basic quasi-optical design for EPR detection

Siaw, T.A., Leavesley, A., Lund, A., Kaminker, I., Han S. J. Magn. Reson. 2016, 264, 131-153. 11

Solid state source-based high frequency EPR detection schemes

Bolometer

Homodyne

Heterodyne

EPR signal: Free induction decay & echoes

Prasad P.V., Storey P. Magnetic Resonance Imaging. In: Molecular Biomethods Handbook. Humana Press, 949-973. Wikipedia, Hanh echo, https://commons.wikimedia.org/wiki/File:HahnEcho_GWM.gif.

Examples of classic EPR relaxation acquisitions

Hovav, Y. et al *Phys. Chem. Chem. Phys.* **2015**, *17*, 226-244. Leavesley, A., et al *Phys. Chem. Chem. Phys.* **2017**, *19*, 3596-3605.

Baseline defects result from AMC hysteresis effects

(a) Norm. Int. Echo int. 1.0 0.8 120 mW 0.6 06 mW 2ⁱmW 4 mW 0.4 6 mW 24 mW 197.7 GHz 4 K 11'mW 0.2 197.8 197.6 198.0 198.2 198.4 197.4 V_{excite} (GHz)

1-source ELDOR

40 mM 4-amino TEMPO

Leavesley, A., Kaminker, I., Han, S. eMagn. Reson. 2018, 7. 17

AL1 Do I unclude the 2-source modification to the instrumentation? Or move straight into more practical applications? Alisa Leavesley; 12.06.2019

Leavesley, A., Kaminker, I., Han, S. eMagn. Reson. 2018, 7. 18

Background free ELDOR measurements with 2-source configuration

1-source ELDOR

2-source ELDOR

40 mM 4-amino TEMPO

Leavesley, A., Kaminker, I., Han, S. eMagn. Reson. 2018, 7. ¹⁹

AWG operation improves pulse control

Leavesley, A., Kaminker, I., Han, S. eMagn. Reson. 2018, 7. 20

AWG-chirp pulses have broader excitation profiles and improve refocused echo intensities $\Delta v_{chirp} = 3.2MH_z - real$

Leavesley, A. Kaminker, I. Han, S. eMagn. Reson. 2018, 7.

Transition between hole burning ELDOR and ELDOR detected NMR: elucidating hyperfine interactions

Hyperfine interaction identification via electron spin echo envelop modulation (ESEEM)

> Nuclear spins modulate the echo decay

Moro, F., Turyanska, Y., et al. *Sci. Reports* **2015**, *5*, 10855. Deligiannakis, Y. Rutherford, A.W. J. Am. Chem. Soc.**1997**, *119*, 4471-4480 Hyperfine interaction identification via electronnuclear double resonance (ENDOR)

> 2D ENDOR: Hyperfine correlation spectroscopy (HYSCORE)

Comparison of 1D pulsed EPR-based hyperfine interaction detection methods

Napela, A. et al. J. Magn. Reson. 2014, 242, 203-213. Cox, N. et al Methods in Enzymology, 2015, 563, 211-249. 25

 $\frac{\omega_{dd}}{2\pi} = v_{dd} = \frac{\mu_0 g_1 g_2 \beta_e^2}{2hr^3} (3\cos^2\theta - 1)$

 $D \propto r^3$

26

π

 τ_2

π

τ1

τ1

V_{excite}

DEER acquisition: raw signal to electron spin distance distributions

Measuring electron spin distances: polymer brushes

Leavesley, A. Jain, S., et. al. Phys. Chem. Chem. Phys. 2018, 20, 27646-27654.

Measuring electron spin distances: proteins

Spin labeling proteins

Toward the fourth dimension of membrane protein structure: Insight into dynamics from spin-labeling EPR spectroscopy

By Hassane Mchaourab, P. Ryan Steed, and Kelli Kazmier.

Published in *Structure* 19(11): 1549-61 on November 9, 2011. PMID: 22078555. PMCID: PMC3224804. Link to Pubmed page.

DEER Distance Measurements on Proteins

Annual Review of Physical Chemistry Vol. 63:419-446 (Volume publication date May 2012) First published online as a Review in Advance on January 30, 2012 https://doi.org/10.1146/annurev-physchem-032511-143716

J Magn Reson. 2013 Feb;227:66-71. doi: 10.1016/j.jmr.2012.11.028. Epub 2012 Dec 12.

W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity.

Kaminker I¹, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D.

29

Conclusions

• The basic what, why, & how of pulsed high field EPR

• Common pulse sequences for applications

Quasi optical platform for PE THz EPR spectroscopy and microscopy

Probe model: piezo and optical interface

Probe model: optical performance simulations

Mirror	XP loss (dBi)	HM Loss (dBi)
Approach 1: M1	-22.19	-25.20
Approach1: M2	-22.26	-25.27
Approach 2: M1	-24.16	-27.17
Approach 2: M2	-23.57	-26.58

Quasi optical bridge for co- & cross- polar detection

Acknowledgements

UCSB

- Dr. Ilia Kaminker
- Dr. Alicia Lund
- Prof. Songi Han
- Dr. Jessica Clayton
- Prof. Mark Sherwin

Weizmann Institute of Science

• Prof. Shimon Vega

- Dr. Ting Ann Siaw
- Dr. Asif Equbal
- Dr. Sheetal Jain
- Blake Wilson
- Dr. Nick Agladze

• Prof. Daniella Goldfarb

Thomas Keating Ltd

- Dr. Richard Wylde
- Dr. Kevin Pike
- Georg Sebek

United States – Israel Binational Science Foundation