High Frequency Electron Spin Resonance Spectroscopy Today and Tomorrow

Petr NEUGEBAUER petr.Neugebauer@ceitec.vutbr.cz

BRNO UNIVERSITY OF TECHNOLOGY

Nobel Prizes in Magnetic Resonance

Nobel Prizes Directly Related to MR

Name	Year	Category	Description
Paul C. Lauterbur	2003	Medicine	"For their discoveries concerning magnetic resonance imaging"
Sir Peter Mansfield	2003	Medicine	"For their discoveries concerning magnetic resonance imaging"
Kurt Wüthrich	2002	Chemistry	"For his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"
Richard R. Ernst	1991	Chemistry	"For his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"
Felix Bloch	1952	Physics	"For their development of new methods for nuclear
Edward Mills Purcell	1952	Physics	magnetic precision measurements and discoveries in connection therewith"
Isidor Isaac Rabi	1944	Physics	"For his resonance method for recording the magnetic properties of atomic nuclei"

10

Nobel Prizes in Other Fields, Awarded to Individuals Who Also Contributed to the Development of MR

Name	Year	Category	Description
Norman F. Ramsey	1989	Physics	"For the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks"
Hans G. Dehmelt	1989	Physics	"For the development of the ion trap technique"
K. Alexander Müller	1987	Physics	"For their important break-through in the discovery of superconductivity in ceramic materials"
Nicolaas Bloembergen	1981	Physics	"For their contribution to the development of laser spectroscopy"
John H.Van Vleck	1977	Physics	"For their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems"
Alfred Kastler	1966	Physics	"Optical methods for studying Hertzian resonances"

http://www.nobelprize.org/nobel_prizes

Motivation – Why is so?

- Non invasive and not ionizing beam
- Dynamics and structure determination of biological relevant complexes (in X-ray only crystalized systems can be measured)

Determination of Structure, Function and Dynamics of Large Molecular objects

Magnetic Resonance Imaging

Detection of Single Spin

Appl. Magn. Reson. 37, 833 (2010); Phys. Rev. Lett. 108, 017602 (2012); unpublished

HFESR:

• Very powerfull tool in molecular magnetism, biology, structure determination and spin dynamics

Advantages of FDMR:

- Convenient spectrum is recorded as a function of energy (frequency)
- No influence on the sample by changing high magnetic field no higher order field terms
- Fast recording takes less than a minute

\$CEITEC

HFESR:

• Very powerfull tool in molecular magnetism, biology, structure determination and spin dynamics

Advantages of FDMR:

- Convenient spectrum is recorded as a function of energy (frequency)
- No influence on the sample by changing high magnetic field no higher order field terms
- Fast recording takes less than a minute

\$CEITEC

Combine HFEPR and FDMR

Phys.Chem.Chem.Phys., 20, 15528 (2018)

Combine HFEPR and FDMR

100 μM ¹⁴N-TEMPOL in polystyrene 60 K, **1 mg**, ~10¹⁵ spins

EPR

FDMR

Standing Waves

- Off axial quasi-optical components
- Elimination of standing waves in a probe:

Standing waves between sample and detector

Phys.Chem.Chem.Phys., 20, 15528 (2018)

\$CEITEC

Phys.Chem.Chem.Phys., 20, 15528 (2018)

First combine ESR/FDMR spectrometer

• The current worldwide state of the art THz ESR spectrometer.

[1] Phys.Chem.Chem.Phys., 20, 15528 (2018) [2] Inorg. Chem., 56, 402–413 (2017) [3] Inorg. Chem., 56, 2417–2425 (2017) [4] Phys. Rev. B, 96, 094415 (2017) [5] Z. Anorg. Allg. Chem. DOI: 10.1002/zaac.201700282 (2017) [6] *Materials*, 10(3), 249 (**2017**) [7] Nat. Commun., 7, 10467 (2016) [8] Chemical Science, 7,4347–4354 (2016) [9] Dalton Trans., 45, 12301-12307 (2016) [10] Inorg. Chem., 55 (12), 6186-6194 (2016) [11] Dalton Trans., 45, 7555-7558 (2016) [12] Dalton Trans., 45, 8394-8403 (2016) [13] J. Am. Chem. Soc., 137, 13114-13120 (2015) [14] Dalton Trans., 44,15014-15021 (**2015**) [15] J. Mater. Chem. C, 3, 7936-7945 (2015) [16] Dalton Trans., 44,15014-15021 (**2015**) [17] J. Mater. Chem. C, 3, 7936-7945 (2015) [18] Nat. Commun., 5, 5243 (2014) [19] Nat. Phys., 10, 233–238 (2014) [20] Chem. Eur. J., 20, 3475 – 3486 (2014) [21] Chem. Commun., 50, 15090-15093 (2014) [22] Chem. Sci., 5, 3287 - 3293 (2014) And others...

Used by institutions from: Manchester (UK), Washington DC (USA), Bordeaux, Grenoble (France), Lisbon (Portugal), Valencia, Barcelona (Spain), Berlin, Leipzig, Stuttgart (Germany), Buenos Aires (Argentina), Brno, Olomouc (Czech), Vienna (Austria), Beijing, Xi'an (China), Dublin (Ireland), Copenhagen (Denmark)

Thin Films, Modern Materials,...

EU FET-Open Project

Starting date 1.1.2018

PETER - Plasmon-Enhanced Terahertz Electron paramagnetic Resonance spectroscopy

- scanning Electron Paramagnetic Resonance (EPR) microscopy
- high-sensitivity local analysis of paramagnetic organic and inorganic species and materials
- 4 partners, 3 MilEUR

BRNO T. Šikola (project coordinator) **Czech Republic** UNIVERSITY J. Čechal, V. Křápek **OF TECHNOLOGY** J. Van Slageren Germany University of Stuttgart P. Neugebauer Germany R. Hillenbrand Spain A. Nikitin DAOOSCIEDCE COOPERATIVE RESEARCH CENTE R. J. Wylde

K. Pike

2018 Brno Spin and Molecular Dynamics

PETER workshop, Hirschegg 18

Why Brno? • Home, parents,...

• Long history of Magnetic Resonance in Brno (TESLA Brno); J. Dadok. V. Zeman (2008) DOI: 10.3247/SL2Nmr08.003 (in Czech)

NMR in TESLA Brno

UKR Our group in Stuttgart

Today's THz Electron Spin Resonance (single frequency, field sweeps)

Powerful tool in:

- systems with zero field splitting
- biomolecules

||*|||1

- heterogeneous catalysis
- solar-cells, batteries
- ... everywhere where unpaired electrons are involved

Limitations:

- resonant cavities
- restrictions on samples
- single frequency / narrow bandwidth
- high power MW sources (expensive)

263 GHz sample capillary Inner diameter (30 – 100) µm

5 mm

PROBLEM:

- NO method to investigate spin dynamics of bulk and thin film materials at THz frequencies.
- NO method to provide comprehensive information about spin dynamics in a broad frequency range.
- Limiting the technological progress in quantum computation and NMR signal enhancement.

Determination of electron spin dynamics.

Development of the THz-FRaScan-ESR Spectrometer

- Access to relaxation rates if $|\gamma|(d\nu/dt) > T_2^{-2}$
- Rapid FREQUENCY sweeps (NEW) above 100 THz/s (3600 T/s)
- Access to spin relaxation times below 10 ns (1 ns)!
- Multi frequency relaxation studies of large samples non-resonant sample holders
- Measurement of spin dynamics at user selected frequency in range of 85 GHz 1100 GHz

Conventional ESR

Vs. THz-FRaScan-ESR

- + established method
- single frequency / narrow bandwidth
 - different setups for different frequencies
- high power MW sources
- restrictions on samples
 - limits the studies to liquid or powder samples
- ring down of the cavity
 - · limits the studies to relaxations above 100 ns
- expensive
- the method approaches its limits
 - there is no more space to lower the cavity dimensions

+ non-resonant cavities

no restrictions on samples

- thin films, oriented crystals, powders, liquids
- + multi frequency relaxation studies in one setup
 - frequency is defined only by magnetic field
- zero field experiments
- + operating at low MW power
- + very fast and direct measurement
 - provides significantly better S/N ratio in given time
 - higher content of information in the spectra
- + convenient
 - spectra as a function of energy (frequency)
- + opens new possibilities
- cheap and extendable concept
- + applications in NMR magnets
- + reduction of MW heating in DNP exp.
- novel approach

Multi-frequency rapid-scan HFEPR

O. Laguta^a, M. Tuček^b, J. van Slageren^a, P. Neugebauer^{b,*}

^aInstitute for Physical Chemistry and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany ^bCentral European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61200, Czech Republic

O. Laguta et al. J. Magn. Reson. 2018, 296, 138

Reconstruction

Current State

cw X-band (magnettech)

Thanks to Valentin Laguta (Academy of Science, Prague)

THz-FRaScan-EPR

Magnetic field: ±16 Tesla (Cryogen Free)

Temperature range: 1.6 – 400 K

Frequency range: 80 – 1100 GHz Heterodyne detection

Samples: Pellets, Oriented Crystals, Liquids, Air Sensitive

unpublished

Excitation-Detection

Quasi-Optics

4 Sample Holders

Carrousel sample holder

6 samples in one load

Pellets/liquid samples

A. Sojka unpublished

Single-crystal rotator

3D prints of prototypes

Chip-Set sample holder

3D prints of prototypes PETER workshop, Hirschegg 33

Sample Transfer

A. Sojka unpublished

Molecular films preparation

Conclusion

Our Mission

Figure 1.2 High-field EPR groups in Europe (2008).

K. Moebius

\$CEITEC

37

Modern THz method

Molecular Magnetism

Solid State Materials

development

. . .

Solid state materials

• Molecular Nanomagnets (qubits) – ideal candidates for quantum computations

QUantum TEchnologies

Flagship (1 billion EUR)

Nature 532, 426 (28 April 2016)

- Relaxation studies on **oriented single crystals** today nearly impossible
- Spin dynamics of modern solid state materials graphene, topological insulators, TMDC

Molecular thin films

- Towards the applications
- Functionalized substrates

Molecular Nanomagnets - qubits

J. Mater. Chem. C, 2018, 6, 8028--8034

- Microbalance
- Pressure Turbo Station Gauge
- DAWAR CUMPLY Valtage Current Control

3b) Thermal evaporation

Where: MOTeS EPR lab When: June 2019 What: Sublimable molecules Substrate: Glass, gold, silicon, 🕤 TMDs Team:

- **Temperature** •
- Thickness + evaporation rate
- Pressure

Software

Multi-frequency rapid-scan HFEPR

O. Laguta^a, M. Tuček^b, J. van Slageren^a, P. Neugebauer^{b,*}

^aInstitute for Physical Chemistry and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany ^bCentral European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61200, Czech Republic

J. Magn. Reson. 2018, 296, 138

Jagiellonian University, Krakow 45